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Abstract The binding of two holes in a wupled-chain model described by the t-t‘-3 
Hamiltonian is sMied. Using the Bethe A n s a  analysis, it is shown that two holes form 
antibound stales in a triplet spin state. This result can be extended to the case of more than hvo 
holes. The eigenvalue problem when the two holes are in a singlet state is solved exactly and 
one finds that the two holes can bind for aU values of 3.  In this case, antibound states are found 
for sufficiently large values of J .  

1. Introduction 

Recently, much work has been done on strongly correlated systems because of their 
relevance to high-T, superconductivity. An appropriate model for studying the effects of 
strong correlation is the t-J model. The model describes a system of electrons on a lattice 
with the ‘hard-core’ constraint that no two electrons can occupy the same site. The electrons 
can hop 6om one site to another provided that the second site is empty, i.e. occupied 
by a hole. The motion of electrons, or equivalently holes, takes place in a background 
of antiferromagnetically interacting spins. The model describes charge transport, through 
the motion of holes, in the copper oxide planes of the high-T, cuprate systems. In the 
superconducting phase, charge transport occurs through the motion of pairs of holes. Thus, 
the question of whether two holes can bind in the t-J model is of great interest. There have 
been several studies [1-9] of the interaction of holes in the t-J model but the results have 
been far from conclusive. The studies have been mainly based on approximate solutions 
and exact numerical diagonalization for small systems. The latter studies give evidence for 
hole binding in certain parameter regimes of the t-J model. Recently, we have proposed 
a coupled-chain (cc) model described by the t-t’-J Hamiltonian and derived several exact 
results [lo, 111 for the dynamics of a single hole. In this paper, we consider the case of two 
holes and more than two holes in the cc model. By using the well known Bethe Ansatz (BA) 
technique, we derive the dispersion relations for the antibound states of r holes (r > 2). 
By using an exact analytical method, we also show that two holes can form a bound state. 
The same method yields solutions for antibound states of two holes. 

The cc model consists of two chains, each described by a t-J model, coupled by t’-J’ 
interactions between them (figure 1). The model is described by the t-J Hamiltonian: 

The constraint that no site can be doubly occupied is implied in the model. The hopping 
integral tij has the value I for nearest-neighbour (NN) hopping within a chain and also for 
diagonal transfer between chains (solid lines in figure 1). The corresponding spin-spin 
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interactions Jjj are of strength J .  The spins have magnitude 1. The hopping integral across 
vertical links (broken lines) connecting two chains has the strength t'. The corresponding 
spin-spin interaction strength Jij is assumed to be 25 although the exact results derived 
below hold true also for other interaction strengths. In the following, we assume t and t' to 
be positive. In the half-filled l i t .  i.e. in the absence of holes, the t t ' -J  Hamiltonian in 
(1) reduces to HJ. The exact ground state Y, of HJ consists of singlets along the vertical 
bonds with energy Eg = - ( 3 J / 2 ) N ,  where 2N is the number of sites in the system. For 
J' > 23, the exact ground state is still the same, however, for J' < 2 J ;  the state, although 
an exact eigenstate, may not be the ground state. The exact eigenstates of HJ have a simple 
structure. In all these eigenstates the spin configuration of each vertical link is any one 
of four types: a singlet with S = 0, S, = 0 or a triplet with S = 1 and S, = + 1 , O  and 
-1, respectively. The reason for this simple structure is, as can be easily verified, that the 
total spin of each vertical link commutes with HJ, i.e. is a conserved quantity. This special 
property of the CC model makes exact calculations possible. 

S Gayen and I Bose 

Fiyrc 1. "he coupled hvochain model described by the 1 - 1 ' 4  Hamiltonian (1). 

2. Bound and antibound states of holes 

We now consider the case of two holes in the cc model. The holes are introduced in the 
ground state of the model in two different vertical links so that the dimers along these links 
are broken. The two free spins from the broken dimers combine to make the total spin 
of the system either S = 1, i.e. a triplet, or S = 0, i.e. a singlet. We first consider the 
case S = 1 and S, = +I.  The states S = 1, S, = 0, -1 are degenerate with the S, = + I  
state. Let the holes by located in the vertical links numbered ml and mz respectively, where 
ml < mz. The eigenfunction UI of the t-t'-I Hamiltonian is given by 

The solid vertical lines represent singlets, the arrows stand for up-spins and the open circles 
denote holes. We have to solve the eigenvalue problem HY = EY, where E is the energy 
eigenvalue of the system. A hole can hop either to a NN site in the vertical and horizontal 
directions or to NN diagonal positions. The fermionic nature of the background spins is taken 
into account during the hopping of the bole. In general, when a hole hops, it scrambles up 
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the spin arrangement in its neighbourhood and the eigenvalue problem becomes difficult to 
solve. In the present case, when Ht + Htt in equation (1) operates on the state Y(mIm2) 
in equation (3). there is a neat cancellation of terms in which spin configurations other 
than those in equation (3) occur in the vicinity of the hole. As a result, the hole simply 
translates to a NN position with the spin background unchanged. The eigenvalue equation 
when m2 # ml + 1, i.e. when the holes do not occupy NN links, is given by 

Ea(mt,m?) = (-2r’+3J)a(ml,mz) 

+t[a(mi - l , m d + a ( m i  + l ,mz)+a(mi,mz- l)+a(mi,m2+1)1. 

(4) 

The energy E has been measured with respect to the ground-state energy in the undoped 
state. The amplitude a(ml, mz) is given by the BA [ 121 

(5) 

The wavevectors of the two holes are denoted by ki and k2 and Q, is analogous to a ‘phase 
shift’. Since the two holes cannot occupy a single site, the holes in general should be treated 
as spinless fermions. In I D  the holes can also be treated as hard-core bosons. The statistics 
of the holes are irrelevant in this case since a pair of them cannot be interchanged owing to 
the constraint of no double occupancy at every site. In dimensions greater than 1, different 
statistics will give rise to different results [13]. In the present case, although the model has 
a strip geometry with the possibility of exchange of holes, the model basically reduces to a 
ID problem as will be clear after the derivation of equation (7). Thus the choice of statistics 
does not matter. We have treated the holes as bosons (see equations (3) and (5)) in the 
present problem. The hard-core constraint is built into the model. One can verify that on 
assigning fermionic statistics to the holes (antisymmetrize a(ml,  mz) in equation (5) rather 
than symmehize) the final results do not change. The eigenvalue equation (4) is satisfied 
by the Ansatz (5) with the eigenvalue 

E = ( - t ‘ + 3 J / 2 + 2 t c o s k i ) + ( - r ’ + 3 J / 2 + 2 t ~ 0 ~ k z ) .  (6) 

a h ,  m2) = exp[i(klmi + kzmz + Q,/2)1+ exp[i(kzm~ + kimz - @/2)1. 

The eigenvalue equation when the holes occupy NN links, i.e. m2 = mi + 1, is 

Ea(ml,  mi + 1) = (-Zt’ + I3 J /4 )a (mi ,  mt + 1) + t[a(mi - 1, ml + 1) + a(mi, ml + 2)l. 

0) 
The states Y (mi,  m2) form a closed subspace of states in which the Hamiltonian operates 
so that Q given by equation (2) is an eigenfunction. When HI operates on the state 
Y(ml,mi  + 1). there is an exact cancellation of terms in which two holes occupy the 
same vertical link. This makes the application of the BA formalism possible; the two-chain 
problem basically reduces to a 1D problem. The subspace of states defining the present 
eigenvalue problem (S = 1, S, = +1) does not contain the state in  which two holes occupy 
the same vertical link This state has to occur as an intermediate state in the physical 
exchange of two holes, but the absence of the state in the subspace of states rules out 
the possibility of exchange of holes as in the case of ID. By comparing equations (4) and 
(7), one finds that the exchange interaction energy increases when the holes occupy NN 
links. This unfavourable energy increase is due to the triplet configuration of the free spins. 
Equation (7) is also satisfied by the BA (equation (5)) provided that 

- ( J /4 )a (m1 ,m1+1)+t[a (mi+I ,mi+l )+a(m1 .m1)1=0  (8) 
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from which, using the BA form for the amplitudes, one derives the condition 
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sin(kl/2 - kz/2) 
(2/ff)CoS(k1/2 + k2/2) -~0s(kl/2 - k2 /2 )  

cot(;) = 

where a = J / 4 t .  Further, the periodic boundary condition gives u(m1, m2) = a(m2, ml + 
N )  so that 

Nkl - Q = 2 n l l  

Nk2 + 0 = 2nhz 

A l , A 2  = O ,  1 ,2  ,... , N - 1. 

The sum k = kl + kz is a constant of motion by translational symmehy. For real kl, k2 
and Q(-Il  < 0 < n) and with the choice (A2 - A,) 2 2, as in Bethe's solution 1141, 
one gets N-'C2 solutions with the eigenvalues given by equation (6). This gives rise to a 
continuum of scattering states. The rest of the N - 1 solutions are obtained by assigning 
complex values to kl and k2 (the total number of solutions including both real and complex 
values of kl and kz is NC2). Let 

k l = u + i u  kp=u- iu .  (11) 

Then, from equation (9) 

i sinh U 
(2101) COS U - cosh U ' 

cot (;) = 

Now, from equation (IO), 

N(kl - kz) = 2Niu = 2il(hl - A2) + 2 0 .  (13) 

Put 0 = \v fiK so that 

'P 5 n(h2 - A I )  K NU. (14) 

When U is non-zero, K is very large for large N, so that cot(Qf2) N -i. Then, from 
equation (12). one derives the condition 

exp(-u) = (2/a)cosu. (15) 

From equation (6), using equations (1 1) and (15), we get 

Eb(2) = (-2' + 3 J )  + (4t/a) COS* U +at  

k = Zu(modu10 2n). 

For real values of kl and k2. equation (6) gives the energy of a continuum of scattering 
states. The energy Eb(2) lies above the upper boundary of the energy continuum and hence 
corresponds to an antibound state of two holes. 

We now point out that equation (9) for the phase shi is identical with that for 
an anisotropic Heisenberg Hamiltonian [E] with 2/Iy playing the role of the anisotropy 
parameter A. An extensive literahue exists [13,15,16] on the eigenvalue problem 
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corresponding to A > 1, A 6 -1 and -1 e A -= 1 for both real and complex values 
of the momentum wavevectors and for the number of elementary excitations equal to 2 or 
more. Some of the results of the Heisenberg model are expected to be true for the t-1'-J 
model also. We give just one example to illustrate this. For 01 = 2, i.e. J = 8t,  the situation 
for r holes is described by the same kind of equations as in the case of r magnons in an 
isotropic, s = 4, LD ferromagnet. 

Let us consider r holes. Let the holes be located in the vertical links numbered 
m l ,  m2, . . . , m,, respectively. The eigenfunction Y is now a linear combination of the 

functions ~ ( m l , .  . . , mr):  

Each of the numbers ml, . . . , m,  runs over the possible values 1 to N subject to the condition 
ml e m2 e . . . < m,. This gives states. The general BA for the r-hole state can be 
written as 

P is any permutation of r numbers 1,2, . . . I 1. P1 is the number obtained by operating P 
on 1.  Equation (5) is a special case of equation (18) for r = 2. The same analysis as in the 
case of two holes can be applied. The energy eigenvalue of Y is given by 

The ki-values are determined as before by applying the periodic boundary condition which 
leads to the r equations 

Nki = 2nl.i + Z@ij. (20) 

The Ai are r integers and the @ij are the phase shifts. These are determined by equations 
identical with equation (S), one such equation for each pair of indices. These equations are 
r(r - 1)/2 in number since &j  = - @ j i .  Together with equation (20), there are r ( r  + 1)/2 
equations for as many unknowns. We shall not consider the various solutions in detail but 
consider a particular type of solution in which r holes move together as a block occupying 
r NN vertical links. Again, as in the case of r = 2, the possibility that two holes occupy the 
same vertical link does not occur. The wavevectors ki for the case considered are complex. 
One assumes that r < N and only the phases @lz, &, . . . ,@,-I,, are large [14,17]. Without 
any loss of generality we may put @ 1 - ~ . 1  z 0. Then, from equation (20) 
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Note that 
to 
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> 0 for aU r. For OL = 2, i.e. J = 8t, equation (9) for a phase shift reduces 

2cot(@ln/2) = cot(ktf2) - COt(kJ2). (22) 

Making use of equation (21), we get, to an accuracy of exp(-N), 

2cot(@ln/2) N -2i. (23) 

Thus 

- 2i = cot(kl/2) - cot(kz/2) 

- 2i = cot(k2/2) - cot(k3/2) 

etc. Hence, 

cot(k,/2) = 2i + cot(k,-t/2). (25) 

The solution is 

cot(k[/2) = 2ii + C. (26) 

To determine C, consider the total momentum K of the r-hole system 

The wavefunction 
levels are characterized by K ;  we obtain 

2ri - i[exp(ik) - 11 
exp(ik) - 1 

is multiplied by exp(ik) under a shift mi 4 mi + 1 and the energy 

C =  

r + E[exp(ik) - 11 
r + (I - I)[exp(ik) - 11' 

exp(ikr) = 

The energy eigenvalue is obtained from equation (19) as 

E&) = r(2t - t ' + 3 J / 2 )  - (2t/r)(l -cosK). (28) 

Th is  energy is greater than the energy eigenvalues corresponding to the continuum of 
scattering states for real ki obtained from equation (19). The eigenstate is thus an antibound 
state of r holes. The dispersion relation of the r-magnon bound state in the case of the 
isotropic s = i, ID ferromagnet is 

E(') = -(1 -cosK). (29) 
1 
r 

The similarity of the dispersion relations (28) and (29) is a result of the fact that the BA 
equations for the phase shifts are identical in both the cases. 
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We next consider the case when the free spins from the broken dimers (after the 
introduction of two holes in the ground state) form a singlet with total spin S = 0. In 
this case, the reduction of the s'uip problem to a ID situation is not possible as the subspace 
of states now includes the state in which two holes occupy the same vertical link, leading 
to the possibility of exchange of holes. Now the holes are treated as spinless fermions in 
contrast with the previous case where the statistics do not matter. Define the wavefunctions 

and 

Define also the Fourier transforms 

and 

The two holes are separated by a distance r .  From the periodic boundary condition and 
for r # N I 2  the allowed values of k are k = 2 n A / N ,  with A = 0, 1,2,. . . , N - 1. For 
r = N j 2 ,  the allowed values of k are odd multiples of 2 n l N .  An eigenfunction in the 
momentum space is given by 

where k is an even multiple of 2 l l j N .  When k is an odd multiple of 2 n / N ,  the 
eigenfunction is & and the sum in equation (31) runs from 0 to N j 2 .  The exact eigenvalue 
equations for the amplitudes are as follows. 

(i) When k is an odd multiple of 2 n j N ,  
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where T = 2tcos(k/2). It is clear from the eigenvalue equations that the exchange energy 
is the smallest when the holes occupy the same link and smaller when the holes occupy 
NN vertical links than when they are farther apart. This is in contrast with the situation 
when the holes are in a triplet spin state. Thus the singlet spin state is favourable for the 
formation of hole bound states. Equations (32) have the solutions 

S Gayen and I Bose 

where q is the relative momentum wavevector (0 < q < n). Defining c = E - 35 + Zr’, 
and from equation (32c) one derives the condition 

E = 2Tcosq. (34) 

From equations (322) and (32b), one gets 

Tcos[q(N/2 - 2)] + 3J 4T2 ‘ -!- 4 = E + Z J  - 2’ cos[q(N/2 - l)] ‘ 
(35) 

The eigenvalues c are obtained from the simultaneous solution of equations (34) and (35). 
For real values of q ,  the energies correspond to free hole states. Energies for bound and 
antibound states are obtained by making q complex. When T is positive, making the 
changes q + iq and q --f n + iq, one gets the energies for antibound and bound states, 
respectively. When T is negative, the reverse is true. The bound-state energies for different 
values of q are lower than the lowest of energies for real values of q. The antibound-state 
energies lie higher than the highest of energies for real values of 4. 

(ii) When k is an even multiple of 2n/N.  the same eigenvalue equations as in 
equations (32) hold true except that ak(N/2) = 0. The amplitudes now have the form 

aK(lt) = sin[q(N/2 - n)] for 1 6 n < N / 2  - 1. (36) 
The energy eigenvalues are obtained by simultaneously solving the equations 

E = 2T cosq 

and 

T sin[q(N/Z - 211 
sm[q(N/2 - l)] . 4T2 + . 3 J  

E ’ 4 = E + 3 J / 2  - 2t’ (37) 

The energies for real values of q correspond to free hole states. The energies for bound and 
antibound states are obtained by making q complex in the same manner as in the case when 
k is an odd multiple of 2 n / N .  For both cases, antibound states do not exist for very small 
values of J .  On the other hand, bound states exist for aU values of J including J = 0. The 
greater the value of J ,  the smaller is the spread of the bound-state wavefunction. Recently, 
Tsunetsugu et a1 [18] have considered doped t-J ladders (the r-J ladder is similar to 
our cc model but with the frustrating diagonal interaction and the hopping terms missing). 
They have carried out exact diagonalization studies of finite-sized ladders using the Lanczos 
method. They find evidence of the binding of two holes in the ground state. 

To conclude, we have derived some exact results for the doped cc model. The effects of 
strong correlation and quantum fluctuation have been taken into account in an exact manner. 
The results derived show that two holes can bind in a singlet spin state but not in a triplet 
spin state. In the triplet spin state, r holes (r  2) can form antibound states. We have not 
been able to extend our exact analysis for bound states to the case of more than two holes. 



States of holes in coupled-chain model 5879 

Acknowledgment 

One of the authors (SG) is supported by the Council of Scientific and Industrial Research. 
India under section 9/15(103)/92-EMR-I. 

References 

[l]  Hasegawa Y and Poilblanc D 1989 Phys. Rev. B 40 9035 
[2] Dagono E, Rim I and Young A P I990 Phys. Rev. B 42 2347 
131 Barnes T, Jambs A E Kovarik M D and Macready W G 1992 Phys. Rev. B 45 256 
[4] lnoue J and Maehwa S 1992 Pmg. Theor. Phys. Suppl 108 313 
[SI E h  R 1992 Phys. Rev. B 45 319 
1.51 DagotIo E, Rem J and Scalapino D 1992 Phys. Rev. B 45 5744 
[7l Bonimgni M and Manonsakis E 1993 Phys. Rev. B 47 I 1  897 
[SI Poilblanc D, Rim J and Dagono E 1994 Phys. Rev. B 49 12318 
[9] Wr6M P and Eder R 1994 Phys. Rev. B 49 1223 
[IO] Bose I and Gayen S 1993 Pkys Rev. B 48 10653 
[ I l l  Bose I and Gayen S 1994 J. Phys.: Condenr. Moponer 6 U05 
1121 Bethe H 1931 2 Phys. 71 205 
1131 Low M Wand Zntos X 1992 Phvs. Rev. B 45 9932 

DaGtto E, Riera J, Chen Y C, hioreo A. Nararenko A. Alcaraz F and Ortolani F 1994 Phys. Rev. B 49 
3548 

1141 Mjumder C K 1972 Sold Stole Phyyricr cd F C Auluck (Neu Delhi: Thomson Press Inda Ld) 
lzyumob Y A md Skryyabin Y N 1988 Snuurical Uechmics ofUogneiicolly Ordered System (New Yo* 

I151 Orbxh R 1958 Phyr. Rev. 112 309 
1161 Gaudin M 1993 La Fontion d'On Bethe pur /er Uodiles f iocu  de lo Udcnntpue Sronsnpue (PW: 

[I71 Ovchinnikov A 1969 Zh. WLrp %or FLL 56 1354 
[IS] Tsuneeugu H. Tmyer M u l d  Face T M 1991 P l t p  Rev. B 49 16M8 

Consultants Bureau) 

Commissaria~ 3 I'Enerbe Atomjquc) 


